Status of City of Unalaska Wind Power Development and Integration Assessment Project

Presentation to City Council
Douglas Vaught, P.E.
V3 Energy, LLC
November 10, 2022

History of project

- Wind energy feasibility study of Naknek and Unalaska
 - Dames and Moore, 1999, for Alaska Division of Energy
 - No data collected
- Phase I, wind integration assessment
 - Northern Power Systems, 2005, draft report
 - No data collected
- RFP for Phase II to IV
 - Awarded to V3 Energy, LLC, Aug. 2017
- Phase II, develop data collection plan
 - Site options, integration, historical, environmental, and permitting reviews, and data collection plan
 - Report Aug. 2018

History, continued

- Phase III, implement data collection plan
 - Install meteorological (met) towers
 - Collect wind data
 - Wind Resource Assessment report, Feb. 2022
- Phase IV, pre-development plan
 - Analyze effects on powerhouse
 - Assess development paths
 - Economic analyses
 - In progress

Phase II Site Options

- Unalaska terrain complex and constrained
- Airspace restrictions
- Limited electrical distribution network
- Lower Pyramid Valley obvious candidate
- Hog Island alternate relatively large area
- Ballyhoo has higher elevation access, but very high modeled wind speeds, icing, steep switchback road, WWII National Historic Area

Met towers (guyed, tubular)

- Lower Pyramid Valley (near Veronica Lake), 60 meter (197 ft.), 10/2018 to 8/2021
- Hog Island, 60 meter (197 ft.), 8/2019 to 4/2021
- Icy Creek Reservoir, 34 meter (112 ft.), 10/2018 to 10/2019
- Bunker Hill summit, 10 meter (33 ft.), 10/2018 to 6/2020

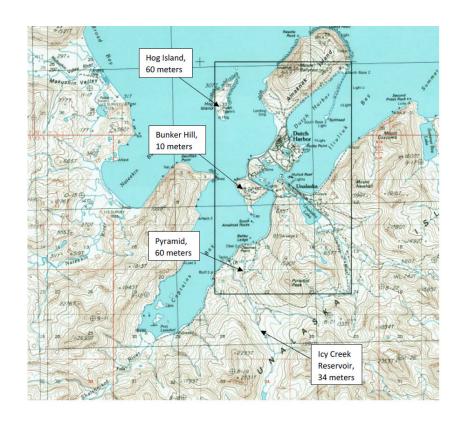
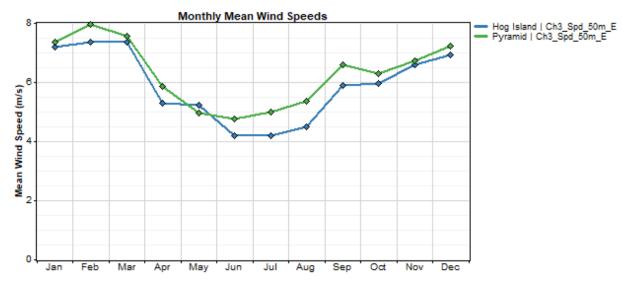



Figure 2: Pyramid 60-meter met tower (Andy Dietrich aerial photo)

Pyramid vs. Hog Island

- Pyramid Valley: 6.84 m/s (15.3 mph) mean speed at 60 m, wind power class 5 (of 7), 51.4 m/s (115 mph) max. gust
- Hog Island: 6.00 m/s mean wind speed at 60 m level, wind power class 3, 40.7 m/s (91 mph) gust, instrumentation problems

Pyramid wind summary

10/16/2018 to 8/12/2021 (34 months)				
NRG Symphonie PRO, 26 channel, site no. 3550				
53.8496 North, 166.5625 West (WGS 84 datum)				
103 meters (334 ft.)				
6.84 m/s corrected to Dutch Harbor Airport long-term				
weather station data; 6.39 m/s as measured				
548 W/m ² when corrected to Dutch Harbor Airport long-				
term weather station data; 446 W/m² as measured				
5 (excellent), when corrected to Dutch Harbor Airport				
long-term weather station data) of 7 defined				
classifications; 4 (good) as measured				
37.5 m/s (83.9 mph)				
51.4 m/s (115.0 mph)				
0.100 (low; 0.140 considered nominal)				
Approx. 33%				
41.3 to 47.6 m/s				
0.120				
Class IIB				

Alaska Energy Authority's Renewable Energy Fund (REF)

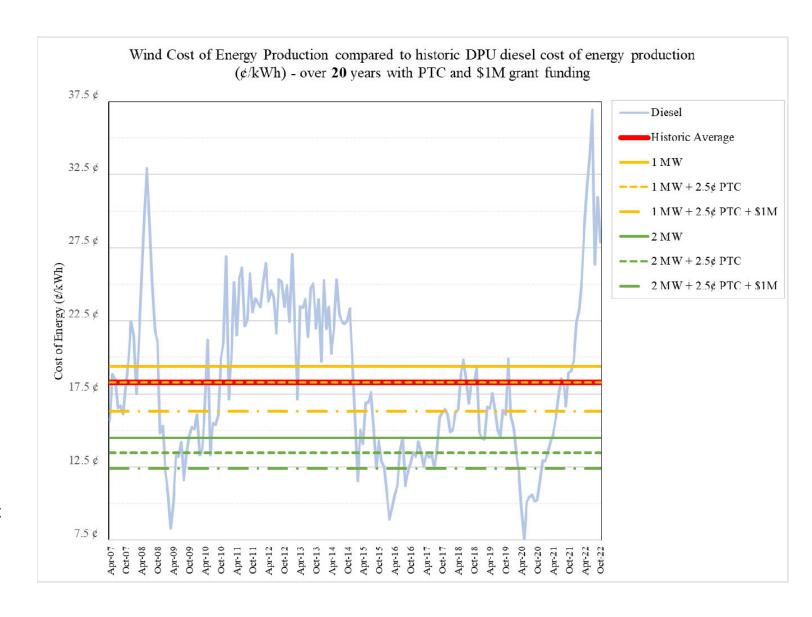
- Round 13 (2020) grant award (\$139K) to COU for wind power feasibility (signed 1/2022 due to appropriation delay)
- Remaining Phase III and IV tasks transferred to REF13 project
- Accomplished to date:
 - Site wind flow and power system modeling
 - Hired HDL 5/2022 to review WTP geotech studies for foundation design
 - Scope mod 6/2022 for pre-design to enable application for construction
 - Hired EPS 7/2022 to assess interconnection and powerplant integration
 - Hired STG 10/2022 to assess construction requirements and costs
 - Requested EWT turbine cost quote 9/2022

EWT DW58-1000

- Emergya Wind Technologies, The Netherlands
 - 58 m (190 ft.) rotor diameter, 1,000 kW capacity
 - Gearless/direct drive, synchronous generator, tubular tower
 - Tip heights of 250 ft./325 ft. (46 m/69 m hub hts.)
 - Designed for isolated grids (like Unalaska)
 - Survivability wind speed 59.5 m/s (133 mph)
 - Nine in rural Alaska (2 in Kotzebue, 2 in Nome, 2 in Delta Junction, 1 in Bethel, 1 in St. Mary's, 1 soon in Stebbins)
 - All are previous generation DW52-900 and DW54-900 models, (survivability of 59.5 and 52.5 m/s respectively)

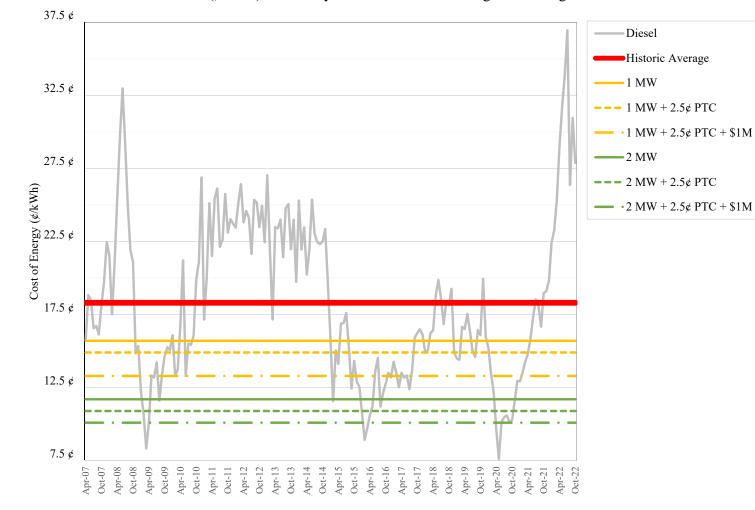
Possible Project

- One EWT 58-1000 wind turbine
 - COU land between WTP and Veronica Lake
 - Generate ~ 2,260 MWh/yr (approx. 4.8% of 2019-2022 electric load demand)
- Cost estimate
 - \$8.6M, AEA estimated cost for 1 MW wind
 - \$13.35M AEA estimated cost for 2 MW wind
 - Costs based on Alaska reference projects
 - Most are summer-only barge access on permafrost soils
 - Note lower cost/kW for 2+ turbines
- Working on Unalaska-specific price estimates and quotes


Funding Opportunities

- AEA Renewable Energy Fund Round 15
 - Applications due: 12/5/2022
 - AEA makes recommendations to legislature: 3/15/2023
 - Legislative approval and signed by governor: 6/30/2023
 - Award effective date: 7/1/2023
 - \$4M maximum award for design/construction project
- Inflation Reduction Act
 - 0.5¢-to-2.5¢/kWh production tax credit (PTC) for 10 years

Wind vs. Diesel Cost of Energy


Assumptions:

- 20-yr project life
- 2.5¢ Production Tax Credit (PTC)
- \$1M grant

Wind Cost of Energy Production compared to historic DPU diesel cost of energy production (ϕ/kWh) - over 25 years with PTC and \$1M grant funding

Wind vs.
Diesel Cost of Energy

Assumptions:

- 25-yr project life
- 2.5¢ Production Tax Credit (PTC)
- \$1M grant

Wind Project Cost Scenarios

	20 yr	Difference	25 yr	Difference	Cap	tial Outlay
Scenario		from Historic		from Historic		
	¢/kWh	Average	¢/kWh	Average	(millions)	
2007-2022 Avg DPU cost of energy production	18.3 ¢		18.3 ¢			
1 MW wind cost of energy	19.4 ¢	1.1 ¢	15.7 ¢	-2.6 ¢	\$	8.6
1 MW + 2.5¢ PTC	18.3 ¢	0. ¢	14.9 ¢	-3.4 ¢	\$	8.6
1 MW + 2.5¢ PTC + \$1M grant	16.3 ¢	-2. ¢	13.3 ¢	-5. ¢	\$	7.6
1 MW + 2.5¢ PTC + \$2M grant	14.2 ¢	-4.1 ¢	11.6 ¢	-6.7 ¢	\$	6.6
1 MW + 2.5¢ PTC + \$4M grant	10.1 ¢	-8.2 ¢	8.4 ¢	-9.9 ¢	\$	4.6
2 MW wind cost of energy	14.5 ¢	-3.8 ¢	11.7 ¢	-6.6 ¢	\$	13.3
2 MW + 2.5¢ PTC	13.5 ¢	-4.8 ¢	10.9 ¢	-7.4 ¢	\$	13.3
2 MW + 2.5¢ PTC + \$1M grant	12.4 ¢	-5.9 ¢	10.1 ¢	-8.2 ¢	\$	12.3
2 MW + 2.5¢ PTC + \$2M grant	11.4 ¢	-6.9 ¢	9.3 ¢	-9. ¢	\$	11.3
2 MW + 2.5¢ PTC + \$4M grant	9.4 ¢	-8.9 ¢	7.6 ¢	-10.7 ¢	\$	9.3